Research ArticleNAVIGATION

A seasonally invariant deep transform for visual terrain-relative navigation

See allHide authors and affiliations

Science Robotics  23 Jun 2021:
Vol. 6, Issue 55, eabf3320
DOI: 10.1126/scirobotics.abf3320

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Visual terrain-relative navigation (VTRN) is a localization method based on registering a source image taken from a robotic vehicle against a georeferenced target image. With high-resolution imagery databases of Earth and other planets now available, VTRN offers accurate, drift-free navigation for air and space robots even in the absence of external positioning signals. Despite its potential for high accuracy, however, VTRN remains extremely fragile to common and predictable seasonal effects, such as lighting, vegetation changes, and snow cover. Engineered registration algorithms are mature and have provable geometric advantages but cannot accommodate the content changes caused by seasonal effects and have poor matching skill. Approaches based on deep learning can accommodate image content changes but produce opaque position estimates that either lack an interpretable uncertainty or require tedious human annotation. In this work, we address these issues with targeted use of deep learning within an image transform architecture, which converts seasonal imagery to a stable, invariant domain that can be used by conventional algorithms without modification. Our transform preserves the geometric structure and uncertainty estimates of legacy approaches and demonstrates superior performance under extreme seasonal changes while also being easy to train and highly generalizable. We show that classical registration methods perform exceptionally well for robotic visual navigation when stabilized with the proposed architecture and are able to consistently anticipate reliable imagery. Gross mismatches were nearly eliminated in challenging and realistic visual navigation tasks that also included topographic and perspective effects.

View Full Text

Stay Connected to Science Robotics