Research ArticleBIOMIMETICS

A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike

See allHide authors and affiliations

Science Robotics  20 Jan 2021:
Vol. 6, Issue 50, eabc8170
DOI: 10.1126/scirobotics.abc8170

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

The biomechanics underlying the predatory strike of dragonfly larvae is not yet understood. Dragonfly larvae are aquatic ambush predators, capturing their prey with a strongly modified extensible mouthpart. The current theory of hydraulic pressure being the driving force of the predatory strike can be refuted by our manipulation experiments and reinterpretation of former studies. Here, we report evidence for an independently loaded synchronized dual-catapult system. To power the ballistic movement of a single specialized mouthpart, two independently loaded springs simultaneously release and actuate two separate joints in a kinematic chain. Energy for the movement is stored by straining an elastic structure at each joint and, possibly, the surrounding cuticle, which is preloaded by muscle contraction. As a proof of concept, we developed a bioinspired robotic model resembling the morphology and functional principle of the extensible mouthpart. Understanding the biomechanics of the independently loaded synchronized dual-catapult system found in dragonfly larvae can be used to control the extension direction and, thereby, thrust vector of a power-modulated robotic system.

View Full Text

Stay Connected to Science Robotics