You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Soft sensors have been playing a crucial role in detecting different types of physical stimuli to part or the entire body of a robot, analogous to mechanoreceptors or proprioceptors in biology. Most of the currently available soft sensors with compact form factors can detect only a single deformation mode at a time due to the limitation in combining multiple sensing mechanisms in a limited space. However, realizing multiple modalities in a soft sensor without increasing its original form factor is beneficial, because even a single input stimulus to a robot may induce a combination of multiple modes of deformation. Here, we report a multifunctional soft sensor capable of decoupling combined deformation modes of stretching, bending, and compression, as well as detecting individual deformation modes, in a compact form factor. The key enabling design feature of the proposed sensor is a combination of heterogeneous sensing mechanisms: optical, microfluidic, and piezoresistive sensing. We characterize the performance on both detection and decoupling of deformation modes, by implementing both a simple algorithm of threshold evaluation and a machine learning technique based on an artificial neural network. The proposed soft sensor is able to estimate eight different deformation modes with accuracies higher than 95%. We lastly demonstrate the potential of the proposed sensor as a method of human-robot interfaces with several application examples highlighting its multifunctionality.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is an article distributed under the terms of the Science Journals Default License.