Research ArticleBIOMIMETICS

Autonomic perspiration in 3D-printed hydrogel actuators

See allHide authors and affiliations

Science Robotics  29 Jan 2020:
Vol. 5, Issue 38, eaaz3918
DOI: 10.1126/scirobotics.aaz3918

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


In both biological and engineered systems, functioning at peak power output for prolonged periods of time requires thermoregulation. Here, we report a soft hydrogel-based actuator that can maintain stable body temperatures via autonomic perspiration. Using multimaterial stereolithography, we three-dimensionally print finger-like fluidic elastomer actuators having a poly-N-isopropylacrylamide (PNIPAm) body capped with a microporous (~200 micrometers) polyacrylamide (PAAm) dorsal layer. The chemomechanical response of these hydrogel materials is such that, at low temperatures (<30°C), the pores are sufficiently closed to allow for pressurization and actuation, whereas at elevated temperatures (>30°C), the pores dilate to enable localized perspiration in the hydraulic actuator. Such sweating actuators exhibit a 600% enhancement in cooling rate (i.e., 39.1°C minute−1) over similar non-sweating devices. Combining multiple finger actuators into a single device yields soft robotic grippers capable of both mechanically and thermally manipulating various heated objects. The measured thermoregulatory performance of these sweating actuators (~107 watts kilogram−1) greatly exceeds the evaporative cooling capacity found in the best animal systems (~35 watts kilogram−1) at the cost of a temporary decrease in actuation efficiency.

View Full Text

Stay Connected to Science Robotics

Editor's Blog