Research ArticleCOLLECTIVE BEHAVIOR

Magnetic quadrupole assemblies with arbitrary shapes and magnetizations

See allHide authors and affiliations

Science Robotics  30 Oct 2019:
Vol. 4, Issue 35, eaax8977
DOI: 10.1126/scirobotics.aax8977

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Magnetic dipole-dipole interactions govern the behavior of magnetic matter across scales from micrometer colloidal particles to centimeter magnetic soft robots. This pairwise long-range interaction creates rich emergent phenomena under both static and dynamic magnetic fields. However, magnetic dipole particles, from either ferromagnetic or paramagnetic materials, tend to form chain-like structures as low-energy configurations due to dipole symmetry. The repulsion force between two magnetic dipoles raises challenges for creating stable magnetic assemblies with complex two-dimensional (2D) shapes. In this work, we propose a magnetic quadrupole module that is able to form stable and frustration-free magnetic assemblies with arbitrary 2D shapes. The quadrupole structure changes the magnetic particle-particle interaction in terms of both symmetry and strength. Each module has a tunable dipole moment that allows the magnetization of overall assemblies to be programmed at the single module level. We provide a simple combinatorial design method to reach both arbitrary shapes and arbitrary magnetizations concurrently. Last, by combining modules with soft segments, we demonstrate programmable actuation of magnetic metamaterials that could be used in applications for soft robots and electromagnetic metasurfaces.

View Full Text