Research ArticleSOFT ROBOTS

Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities

See allHide authors and affiliations

Science Robotics  28 Aug 2019:
Vol. 4, Issue 33, eaax7020
DOI: 10.1126/scirobotics.aax7020


The tight integration of actuation, sensing, and communication capabilities into origami robots enables the development of new-generation functional robots. However, this task is challenging because the conventional materials (e.g., papers and plastics) for building origami robots lack design opportunities for incorporating add-on functionalities. Installing external electronics requires high system integration and inevitably increases the robotic weight. Here, a graphene oxide (GO)–enabled templating synthesis was developed to produce reconfigurable, compliant, multifunctional metallic backbones for the fabrication of origami robots with built-in strain sensing and wireless communication capabilities. The GO-enabled templating synthesis realized the production of complex noble metal origamis (such as Pt) with high structural replication of their paper templates. The reproduced Pt origami structures were further stabilized with thin elastomer, and the Pt-elastomer origamis were reconfigurable and served as the multifunctional backbones for building origami robots. Compared with traditional paper and plastic materials, the reconfigurable Pt backbones were more deformable, fire retardant, and power efficient. In addition, the robots with conductive Pt-elastomer backbones (Pt robots) demonstrated distinct capabilities—such as on-demand resistive heating, strain sensing, and built-in antennas—without the need for external electronics. The multifunctionality of Pt robots was further demonstrated to extend beyond the capabilities of traditional paper-based robots, such as melting an ice cube to escape, monitoring/recording robotic motions in real time, and wireless communications between robots. The development of multifunctional metallic backbones that couple actuation, sensing, and communication enriches the material library for the fabrication of soft robotics toward high functional integration.

View Full Text

Stay Connected to Science Robotics