You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The processes underlying the generation of motor adaptation in response to mechanical perturbations during human walking have been subject to debate. We used a robotic system to apply mechanical perturbations to step length and step height over consecutive gait cycles. Specifically, we studied perturbations affecting only step length, only step height, and step length and height in combination. Both step-length and step-height perturbations disrupt normal walking patterns, but step-length perturbations have a far greater impact on locomotor stability. We found a selective process of motor adaptation in that participants failed to adapt to step-height perturbations but strongly adapted to step-length perturbations, even when these adaptations increased metabolic cost. These results indicate that motor adaptation during human walking is primarily driven by locomotor stability, and only secondarily by energy expenditure and walking pattern preservation. These findings have substantial implications for the design of protocols for robot-assisted gait rehabilitation.
- Copyright © 2017, American Association for the Advancement of Science