You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The proliferation of soft robotics research worldwide has brought substantial achievements in terms of principles, models, technologies, techniques, and prototypes of soft robots. Such achievements are reviewed here in terms of the abilities that they provide robots that were not possible before. An analysis of the evolution of this field shows how, after a few pioneering works in the years 2009 to 2012, breakthrough results were obtained by taking seminal technological and scientific challenges related to soft robotics from actuation and sensing to modeling and control. Further progress in soft robotics research has produced achievements that are important in terms of robot abilities—that is, from the viewpoint of what robots can do today thanks to the soft robotics approach. Abilities such as squeezing, stretching, climbing, growing, and morphing would not be possible with an approach based only on rigid links. The challenge ahead for soft robotics is to further develop the abilities for robots to grow, evolve, self-heal, develop, and biodegrade, which are the ways that robots can adapt their morphology to the environment.
- Copyright © 2016, American Association for the Advancement of Science