You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Contemporary construction techniques are slow, labor-intensive, dangerous, expensive, and constrained to primarily rectilinear forms, often resulting in homogenous structures built using materials sourced from centralized factories. To begin to address these issues, we present the Digital Construction Platform (DCP), an automated construction system capable of customized on-site fabrication of architectural-scale structures using real-time environmental data for process control. The system consists of a compound arm system composed of hydraulic and electric robotic arms carried on a tracked mobile platform. An additive manufacturing technique for constructing insulated formwork with gradient properties from dynamic mixing was developed and implemented with the DCP. As a case study, a 14.6-m-diameter, 3.7-m-tall open dome formwork structure was successfully additively manufactured on site with a fabrication time under 13.5 hours. The DCP system was characterized and evaluated in comparison with traditional construction techniques and existing large-scale digital construction research projects. Benefits in safety, quality, customization, speed, cost, and functionality were identified and reported upon. Early exploratory steps toward self-sufficiency—including photovoltaic charging and the sourcing and use of local materials—are discussed along with proposed future applications for autonomous construction.
- Copyright © 2017, American Association for the Advancement of Science