Research ArticleIMPLANTABLE ROBOTICS

Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices

See allHide authors and affiliations

Science Robotics  04 Jan 2017:
Vol. 2, Issue 2, eaah6451
DOI: 10.1126/scirobotics.aah6451

You are currently viewing the abstract.

View Full Text

Abstract

Implantable microdevices often have static components rather than moving parts and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method that can produce features in biocompatible materials down to tens of micrometers in scale, with intricate and composite patterns in each layer. By exploiting the unique mechanical properties of hydrogels, we developed a “locking mechanism” for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over 10 days showed high treatment efficacy and low toxicity, at 1/10 of the standard systemic chemotherapy dose. Overall, this platform, called implantable microelectromechanical systems (iMEMS), enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.

View Full Text